Abstract
A multi-species model based on the Nernst-Planck equation has been developed by using a finite volume method. The model makes it possible to simulate transport due to an electrical field or by diffusion and to predict chloride penetration through water saturated concrete. The model is used in this paper to assess and analyse chloride diffusion coefficients and chloride binding isotherms. The experimental assessment of the effective chloride diffusion coefficient consists in measuring the chloride penetration depth by using a colorimetric method. The effective diffusion coefficient determined numerically allows to correctly reproduce the chloride penetration depth measured experimentally. Then, a new approach for the determination of chloride binding, based on non-steady state diffusion tests, is proposed. The binding isotherm is identified by a numerical inverse method from a single experimental total chloride concentration profile obtained at a given exposure time and from Freundlich's formula. In order to determine the initial pore solution composition (required as initial conditions for the model), the method of Taylor that describes the release of alkalis from cement and alkali sorption by the hydration products is used here. Finally, with these input data, prediction of total and water-soluble chloride concentration profiles has been performed. The method is validated by comparing the results of numerical simulations to experimental results obtained on various types of concretes and under different exposure conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have