Abstract
Surface proteins in Gram-positive bacteria are frequently implicated in virulence. We have focused on a group of extracellular cell wall-attached proteins (CWPs), containing an LPXTG motif for cleavage and covalent coupling to peptidoglycan by sortase enzymes. A hidden Markov model (HMM) approach for predicting the LPXTG-anchored cell wall proteins of Gram-positive bacteria was developed and compared against existing methods. The HMM model is parsimonious in terms of the number of freely estimated parameters, and it has proved to be very sensitive and specific in a training set of 55 experimentally verified LPXTG-anchored cell wall proteins as well as in reliable data sets of globular and transmembrane proteins. In order to identify such proteins in Gram-positive bacteria, a comprehensive analysis of 94 completely sequenced genomes has been performed. We identified, in total, 860 LPXTG-anchored cell wall proteins, a number that is significantly higher compared to those obtained by other available methods. Of these proteins, 237 are hypothetical proteins according to the annotation of SwissProt, and 88 had no homologs in the SwissProt database--this might be evidence that they are members of newly identified families of CWPs. The prediction tool, the database with the proteins identified in the genomes, and supplementary material are available online at http://bioinformatics.biol.uoa.gr/CW-PRED/.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Bioinformatics and Computational Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.