Abstract
AbstractPorous carbons with different textural properties exhibit great differences in CO2 adsorption capacity. It is generally known that narrow micropores contribute to higher CO2 adsorption capacity. However, it is still unclear what role each variable in the textural properties plays in CO2 adsorption. Herein, a deep neural network is trained as a generative model to direct the relationship between CO2 adsorption of porous carbons and corresponding textural properties. The trained neural network is further employed as an implicit model to estimate its ability to predict the CO2 adsorption capacity of unknown porous carbons. Interestingly, the practical CO2 adsorption amounts are in good agreement with predicted values using surface area, micropore and mesopore volumes as the input values simultaneously. This unprecedented deep learning neural network (DNN) approach, a type of machine learning algorithm, exhibits great potential to predict gas adsorption and guide the development of next‐generation carbons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.