Abstract
The adsorption of carbon dioxide (CO2) on porous carbon materials offers a promising avenue for cost-effective CO2 emissions mitigation. This study investigates the impact of textural properties, particularly micropores, on CO2 adsorption capacity. Multilayer perceptron (MLP) neural networks were employed and trained with various algorithms to simulate CO2 adsorption. Study findings reveal that the Levenberg–Marquardt (LM) algorithm excels with a remarkable mean squared error (MSE) of 2.6293E−5, indicating its superior accuracy. Efficiency analysis demonstrates that the scaled conjugate gradient (SCG) algorithm boasts the shortest runtime, while the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm requires the longest. The LM algorithm also converges with the fewest epochs, highlighting its efficiency. Furthermore, optimization identifies an optimal radial basis function (RBF) network configuration with nine neurons in the hidden layer and an MSE of 9.840E−5. Evaluation with new data points shows that the MLP network using the LM and bayesian regularization (BR) algorithms achieves the highest accuracy. This research underscores the potential of MLP deep neural networks with the LM and BR training algorithms for process simulation and provides insights into the pressure-dependent behavior of CO2 adsorption. These findings contribute to our understanding of CO2 adsorption processes and offer valuable insights for predicting gas adsorption behavior, especially in scenarios where micropores dominate at lower pressures and mesopores at higher pressures.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have