Abstract
Global System for Mobile communication is a digital mobile system that is widely used in the world. Over the years, the number of subscribers has tremendously increased, the quality of service (Call Drop Rate) became an issue to consider as many subscribers were not satisfied with the services rendered. In this paper, we present the Artificial Neural Network approach to predict call drop during an initiated call. GSM parameters data for the prediction were acquired using TEMS Investigations software. The measurements were carried out over a period of three months. Post analysis and training of the parameters was done using the Artificial Neural Network to have an output of “0” for no-drop calls and “1” for drop calls. The developed model has an accuracy of 87.5% prediction of drop call. The developed model is both useful to operators and end users for optimizing the network.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.