Abstract

The paper gives a general description of the dynamic model of the blast-furnace process that enables to calculate transition processes of the blast furnace thermal state, evaluated by the content of silicon in hot metal. It provides calculation results of the transition processes to be subjected to changes in control actions: ore load from the top and oxygen concentration in blast, natural gas flow rate and hot blast temperature from the bottom. Specific features of these transition processes during blast-furnace smelting are analyzed. The paper shows that the dynamic characteristics of blast furnaces change are subjected to control actions and depend significantly on properties of melted raw materials and operating parameters of blast furnaces. The oscillatory transition process in the blast furnace is observed in the case after disturbance it has an opposite influence on the thermal state of the lower and uppers stages of heat exchange. The paper presents prediction results of the silicon content in hot metal. It gives practical recommendations for selection of control actions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call