Abstract

The structure of the pressure swirl nozzle is an important factor affecting its spray performance. This work aims to study pressure swirl nozzles with different structures by experiment and simulation. In the experiment, 10 nozzles with different structures are designed to comprehensively cover various geometric factors. In terms of simulation, steady-state simulation with less computational complexity is used to study the flow inside the nozzle. The results show that the diameter of the inlet and outlet, the direction of the inlet, the diameter of the swirl chamber, and the height of the swirl chamber all affect the atomization performance, and the diameter of the inlet and outlet has a greater impact. It is found that under the same flow rate and pressure, the geometric differences do have a significant impact on the atomization characteristics, such as spray angle and SMD (Sauter mean diameter). Specific nozzle structures can be customized according to the actual needs. Data analysis shows that the spray angle is related to the swirl number, and the SMD is related to turbulent kinetic energy. Through data fitting, the equations for predicting the spray angle and the SMD are obtained. The error range of the fitting equation for the prediction of spray angle and SMD is within 15% and 10% respectively. The prediction is expected to be used in engineering to estimate the spray performance at the beginning of a real project.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call