Abstract

Dye pollution is a common pollutant in wastewater that poses a serious threat to human health. Layered double hydroxide (LDH) is a commonly used adsorbent for dye removal. However, its adsorption efficiency is significantly limited by the limited adsorption active sites of the adsorbent. In this paper, a defects-rich MgFe LDH adsorbent for anionic dye wastewater was synthesized by a simple hydrothermal method and alkaline etching. Different analytical techniques, such as XRD, FT-IR, SEM, TEM, XPS, and N2 adsorption-desorption isotherm, were used to verify the chemical composition and surface characteristics of the materials, and the effects of pH, temperature, and contact time on the adsorption effect of methyl orange and the adsorption mechanism were analyzed. Alkaline etching of Al and Zn in the laminate generated defects that expose unsaturated coordination centers and create abundant adsorption sites, which can electrostatically attract and coordinate with dye ions. At 25°C, the adsorption capacity of MgFe LDH with Al etched and MgFe LDH with Zn etched for methyl orange dye reached 1722 mg/g and 1685 mg/g, respectively, much higher than that of MgFe LDH (544 mg/g). This work provides a promising method for the removal of dye wastewater by adsorption and a new idea for the design and development of high-performance dye wastewater adsorbents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.