Abstract
The aim of the present study is to predict air-overpressure (AOp) resulting from blasting operations in the Shur river dam, Iran. AOp is considered as one of the most detrimental side effects induced by blasting. Therefore, accurate prediction of AOp is essential in order to minimize/reduce the environmental effects of blasting. This paper proposes a new hybrid model of particle swarm optimization (PSO) and support vector regression (SVR) for AOp prediction. To construct the PSO---SVR model, the linear (L), quadratic (Q) and radial basis (RBF) kernel functions were applied. Here, these combinations are abbreviated using PSO---SVR-L, PSO---SVR-Q and PSO---SVR-RBF. In order to check the accuracy of the proposed PSO---SVR models, multiple linear regression (MLR) was also utilized and developed. A database consisting of 83 datasets was applied to develop the predictive models. The performance of the all predictive models were evaluated by comparing performance indices, i.e. coefficient correlation (CC) and root mean square error (RMSE). As a result, PSO can be used as a reliable algorithm to train the SVR model. Moreover, it was found that the PSO---SVR---RBF model receives better results in comparison with other developed hybrid models in the field of AOp prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.