Abstract

Nowadays, two families of stochastic models are mainly used to predict the dispersion of inertial particles in inhomogeneous turbulent flows. This first one is named “normalized model” and the second one “Generalized Langevin Model (GLM)”. Nevertheless, the main differences between the normalized and GLM models have not been thoroughly investigated. Is there a model which is more suitable to predict the particle dispersion in inhomogeneous turbulence? We propose in the present study to clarify this point by computing a particle-laden turbulent channel flow using a GLM-type model, and also a normalized-type model. Particle statistics (such as concentration, mean and rms particle velocity, fluid-particle velocity covariances) will be provided and compared to Direct Numerical Simulation (DNS) data in order to assess the performance of both dispersion models. It will be shown that the normalized dispersion model studied can predict correctly the effect of particle inertia on some dispersion statistics, but not on all. For instance, it was found that the prediction of the particle kinetic shear stress and some components of the fluid-particle covariance is not physically acceptable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.