Abstract

Respiratory tract infections are a serious threat to health, especially in the presence of antimicrobial resistance (AMR). Existing AMR detection methods are limited by slow turnaround times and low accuracy due to the presence of false positives and negatives. In this study, we simulate 1,116 clinical metagenomics samples on both Illumina and Nanopore sequencing from curated, real-world sequencing of A. baumannii respiratory infections and build AI models to predict resistance to amikacin. The best performance is achieved by XGBoost on Illumina sequencing (area under the ROC curve = 0.7993 on 5-fold cross-validation).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.