Abstract

Accurate assignment of 19F NMR has long been a challenge, and quantum chemical methods are possible solutions. Herein we reported a scaling method for the prediction of 19F NMR chemical shift with freely available ORCA program package. Performance of 31 DFT functionals coupled with 11 basis sets were evaluated and influence of geometry optimization was also studied with five functionals coupled with three basis sets. The significance of geometry was further examined through the execution of relaxed surface scans of seven flexible compounds, and averaged shieldings of obtained conformers yielded notable improvement of the correlation between calculated isotropic shielidings and experimental chemical shifts. Utilization of the best scaling factor obtained successfully assigned of fluorine atoms in multifluorinated molecules with different conformations. The method reported here was computationally inexpensive, easily available with acceptable accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call