Abstract

West Nile Virus (WNV) is a disease caused by mosquitoes where human beings get infected by the mosquito’s bite. The disease is considered to be a serious threat to the society especially in the United States where it is frequently found in localities having water bodies. The traditional approach is to collect the traps of mosquitoes from a locality and check whether they are infected with virus. If there is a virus found then that locality is sprayed with pesticides. But this process is very time consuming and requires a lot of financial support. Machine learning methods can provide an efficient approach to predict the presence of virus in a locality using data related to the location and weather. This paper uses the dataset present in Kaggle which includes information related to the traps found in the locality and also about the information related to the locality’s weather. The dataset is found to be imbalanced hence Synthetic Minority Over sampling Technique (SMOTE), an upsampling method, is used to sample the dataset to balance it. Ensemble learning classifiers like random forest, gradient boosting and Extreme Gradient Boosting (XGB). The performance of ensemble classifiers is compared with the performance of the best supervised learning algorithm, SVM. Among the models, XGB gave the highest F-1 score of 92.93 by performing marginally better than random forest (92.78) and also SVM (91.16).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.