Abstract
Tidal Range Structures (TRS) have been considered for large-scale electricity generation for their potential ability to produce reasonably predictable energy without the emission of greenhouse gases. Once the main forcing components for driving the tides have deterministic dynamics, the available energy in a given TRS has been estimated, through analytical and numerical optimisation routines, as a mostly predictable event. This constraint imposes state-of-art flexible operation methods to rely on tidal predictions to infer best operational strategies for TRS, with the additional cost of requiring to run optimisation routines for every new tide. In this paper, a Deep Reinforcement Learning approach (Proximal Policy Optimisation through Unity ML-Agents) is introduced to perform automatic operation of TRS. For validation, the performance of the proposed method is compared with six different operation optimisation approaches devised from the literature, utilising the Swansea Bay Tidal Lagoon as a case study. We show that our approach is successful in maximising energy generation through an optimised operational policy of turbines and sluices, yielding competitive results with state-of-art optimisation strategies, with the clear advantages of requiring training once and performing real-time automatic control of TRS with measured ocean data only.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.