Abstract

With promoting peaking carbon emissions and achieving carbon neutrality, the real-time distributed control of the prosumers of 100% renewable energy systems (RESs) is challenging. This paper proposes multi-agent quantum-inspired deep reinforcement learning (QDRL) approaches for real-time distributed generation control of 100% RESs. Quantum-inspired operation is introduced into deep reinforcement learning (DRL) as quantum-inspired Q-learning, quantum-inspired state–action–reward-state–action, quantum-inspired deep Q-network, quantum-inspired policy gradient, quantum-inspired deep deterministic policy gradient, quantum-inspired twin-delayed deep deterministic policy gradient, quantum-inspired actor–critic,​ quantum-inspired proximal policy optimization, and quantum-inspired soft actor–critic.​ These proposed nine QDRL approaches are compared with DRL approaches under two 100% RESs. The numeric results show that the QDRL obtains more minor carbon emissions and frequency deviations under complex 100% RESs. Moreover, the quantum states of QDRL match the uncertain states of the prosumers of 100% RESs. Besides, the exploration and exploitation of the QDRL for the real-time control problems of multi-agent systems are verified and analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.