Abstract

Oblique shock waves are unavoidable in a rectangular hypersonic inlet, leading to a non-uniform flow field. While a significant body of the literature exists regarding the shock train modeling in a uniform incoming flow condition, few efforts have focused on the shock train behavior considering the influence of the shock wave boundary layer interactions. A low-order dynamic model of the shock train has been constructed with the help of the free interaction theory and a 1-D analysis approach. Experimental and numerical investigations have been carried out to evaluate the low-order model. The results show that the model has the capability of qualitatively analyzing the shock train behavior. In the cases with incident shocks, the rapid forward movement of the shock train has been observed by experiment. Besides this phenomenon was also modeled using the low-order model. Schlieren images show that when the shock train approaches the interaction zone, its behavior is characterized by oscillation and then follows a rapid forward movement with a linear increasing backpressure at 2.7 Ma. This phenomenon is analyzed theoretically based on the free interaction theory. Meanwhile with the help of the direct numerical simulation results from some existing studies, the flow structures in the interaction region and the following boundary layer also provide the evidence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call