Abstract

For the prediction of the relative stereochemistry of 1,3-dimethyl substitution in alkyl chains, a simple approach based on (1)H NMR data was recently proposed; Δδ values of methylene protons located between methyl-substituted methine carbons can be diagnostic for predicting it. Here we applied this empirical "geminal proton rule" to verucopeptin, a lipopeptide from Streptomyces sp. To determine the absolute stereochemistry of the 1,3,5-trimethyl-substituted alkyl chain in verucopeptin, we converted the corresponding alkyl chain to a carboxylic acid by oxidative cleavage. The geminal proton rule clearly predicted the relative stereochemistry as 31S*,33S*,35R*. This prediction was definitely confirmed by synthesizing four possible diastereomers and comparing their NMR spectra. Furthermore, we reinvestigated the geminal proton rule using reported compounds and our synthesized compounds. Our result strongly suggests that the rule was solid, at least for predicting the stereochemistry of 2,4-dimethylated and 2,4,6-trimethylated fatty acids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.