Abstract

Security in the fifth generation (5G) networks has become one of the prime concerns in the telecommunication industry. 5G security challenges come from the fact that 5G networks involve different stakeholders using different security requirements and measures. Deficiencies in security management between these stakeholders can lead to security attacks. Therefore, security solutions should be conceived for the safe deployment of different 5G verticals (e.g., industry 4.0, Internet of Things (IoT), etc.). The interdependencies among 5G and fully connected systems, such as IoT, entail some standard security requirements, namely integrity, availability, and confidentiality. In this article, we propose a hierarchical architecture for securing 5G enabled IoT networks, and a security model for the prediction and detection of False Data Injection Attacks (FDIA) and Distributed Denial of Service attacks (DDoS). The proposed security model is based on a Markov stochastic process, which is used to observe the behavior of each network device, and employ a range-based behavior sifting policy. Simulation results demonstrate the effectiveness of the proposed architecture and model in detecting and predicting FDIA and DDoS attacks in the context of 5G enabled IoT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.