Abstract

Nowadays, applications of spacer fabric cover wider areas of technical textile. It is used in the automotive textile, personal protective clothing, sports textile, foundation garments, pads for swimwear, buffer clothing, medical textile etc. It does possess good recovery to compression, high bulk with relatively lightweight and very good moisture permeability. Almost in all applications, spacer fabrics are compressed by different parts of human body. Body parts have different shapes and curvatures. In all standard methods, spacer fabric compressibility is measured by a pair of flat circular plate which cannot represent a human body. The contour of body can be assumed as cylindrical with varying radius of curvature. So, it is necessary to understand the mechanism of compression of spacer fabric with cylindrical surface in order to understand the performance of the fabric under real-world dynamics. In this research, an effort is being made to predict the compression behaviour of warp-knitted spacer fabric by flat as well as cylindrical surface. Finite Element Models were designed on Abaqus/CAE platform to meet above requirement with variable circumstances. Experimental setup was also made to analyse cylindrical and flat compression at different circumstances. Results show that flat compression and cylindrical compression are largely deferred in terms of shape of load-deformation curve and compressional energy. Effect of variables on compression behaviour was also analysed. Model results were validated with experimental values. It is found that the proposed model has got a good agreement with the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call