Abstract

Abstract Hybrid polymer composites have been used in various applications because of their superior characteristics. Conventional cutting techniques in these materials produce poor quality machining because of fiber delamination and surface damage. It is also challenging to produce shapes and cuts in polymer composite materials through conventional machining. Abrasive water jet machining (AWJM) may be suitable for producing quality cuts by controlled machining process. This article investigated the AWJM of red mud–filled sisal polyester hybrid composite. The second order regression model was developed for material removal rate (MRR) and kerf taper (KT) through the experimental data. The developed model predicted the MRR and KT with minimum error at 95 % confidence level. The MRR of the hybrid composite was influenced highly by transverse speed (83.56 %) whereas the KT was influenced mostly by standoff distance (SOD, 45.66 %). Scanning electron microscope (SEM) analysis on the cut surface helps to understand the failure mechanism on AWJM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.