Abstract
With the deepening of power market reform and the increasingly fierce competition in the power market, the accurate prediction of electricity price has become an important demand for power market participants to make scientific decisions, optimize resource allocation, and reduce risks. Electricity price forecast can provide a key reference for the power market, help market participants make wise decisions, promote competition and efficient operation and cope with complex market fluctuations, provide a scientific basis for various entities to optimize resource allocation, reduce risks and improve benefits, and promote the sustainable development of the power industry. This study presents a dynamic retail price prediction method for smart grid based on the Stackelberg game model. Firstly, the correlation test is used to verify the strong correlation between electric load and electricity price. Secondly, the parameters of the Stackelberg model are determined, and the load and electricity price are tested using the white noise test. Finally, by comparing the BP neural network model and quantifying the model parameters, the superiority of the model is verified. The results show that the Stackelberg game model has higher prediction accuracy than the BP neural network model in electricity price prediction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have