Abstract
The grinding hardening is an integrated manufacturing technology which combines the surface hardening theory and the grinding technology. However, the grinding chatter accompanies with the whole grinding hardening process. It is the existence of the grinding chatter that makes the transformation unsteady. To this end, the paper presents a three-hybrid model to investigate the relationship between the grinding chatter and the grinding hardening layers distribution. The dynamic grinding force with the analytic and numerical method is calculated firstly. Then the finite difference method (FDM) is used to obtain the dynamic temperature distribution accordingly. Thirdly, the cellular automata (CA) method is applied to calculate the transformed microstructure distribution under different chatter strengths. The study shows that the thickness of the grinding hardening layers goes up with the increase of the grinding chatter. However, the quality of the grinding hardening layers reduces with the increase of the chatter strength. In addition, the martensite content varies with different hardening layers since each layer has its own unique temperature distribution. Moreover, metallurgical experiments are conducted to validate the proposed model. The model is anticipated to be meaningful for the improvements of workpiece's mechanical properties by controlling the chatter strength in the industry manufacturing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.