Abstract

The workpiece’s surface topography is always a key factor to measure the quality of the workpiece’s finish. However, most previous studies on modeling of the workpiece’s surface topography neglect the dynamic hardening effect, which derives from the workpiece’s material microstructure transformation. In this paper, a new coupling model is established to investigate the influence of dynamic hardening effect on the workpiece’s surface topography. Coupled with the analytical and the numerical method, the dynamic grinding force is obtained firstly. Then, the dynamic grinding force is utilized to calculate the dynamic temperature in finite difference method (FDM). Afterwards, the model of the dynamic hardness is established according to the corresponding temperature distribution. Furthermore, coupled with the calculated dynamic hardness, the wheel’s and the workpiece’s surface topography is set up on the basis of the grits’ Gaussian distribution and the grits’ movement trajectory respectively. Finally, the proposed model is further validated by the experiments in different grinding depths. From the comparison, it can be found that the grinding hardening effect should be taken into consideration in analyzing the workpiece’s surface topography. Moreover, the surface roughness of the workpiece can be reduced by decreasing the larger grinding depth, which can result in a stronger hardening effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.