Abstract

Numerous applications require a robust metric that can predict whether image differences are visible or not. However, the accuracy of existing white-box visibility metrics, such as HDR-VDP, is often not good enough. CNN-based black-box visibility metrics have proven to be more accurate, but they cannot account for differences in viewing conditions, such as display brightness and viewing distance. In this paper, we propose a CNN-based visibility metric, which maintains the accuracy of deep network solutions and accounts for viewing conditions. To achieve this, we extend the existing dataset of locally visible differences (LocVis) with a new set of measurements, collected considering aforementioned viewing conditions. Then, we develop a hybrid model that combines white-box processing stages for modeling the effects of luminance masking and contrast sensitivity, with a black-box deep neural network. We demonstrate that the novel hybrid model can handle the change of viewing conditions correctly and outperforms state-of-the-art metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.