Abstract

Water quality and its impacts on human and ecosystem health presents tremendous global challenges. While oxidative water treatment can solve many of these problems related to hygiene and micropollutants, identifying and predicting transformation products from a large variety of micropollutants induced by dosed chemical oxidants and in situ formed radicals is still a major challenge. To this end, a better understanding of the formed transformation products and their potential toxicity is needed. Currently, no theoretical tools alone can predict oxidatively induced transformation products in aqueous systems. Coupling experimental and theoretical studies has advanced the understanding of reaction kinetics and mechanisms significantly. This perspective article highlights the key progress made concerning experimental and computational approaches to predict transformation products. Knowledge gaps are identified, and the research required to advance the predictive capability is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.