Abstract
Understanding transcriptional responses to chemical perturbations is central to drug discovery, but exhaustive experimental screening of disease-compound combinations is unfeasible. To overcome this limitation, here we introduce PRnet, a perturbation-conditioned deep generative model that predicts transcriptional responses to novel chemical perturbations that have never experimentally perturbed at bulk and single-cell levels. Evaluations indicate that PRnet outperforms alternative methods in predicting responses across novel compounds, pathways, and cell lines. PRnet enables gene-level response interpretation and in-silico drug screening for diseases based on gene signatures. PRnet further identifies and experimentally validates novel compound candidates against small cell lung cancer and colorectal cancer. Lastly, PRnet generates a large-scale integration atlas of perturbation profiles, covering 88 cell lines, 52 tissues, and various compound libraries. PRnet provides a robust and scalable candidate recommendation workflow and successfully recommends drug candidates for 233 diseases. Overall, PRnet is an effective and valuable tool for gene-based therapeutics screening.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.