Abstract

Welding is a widely accepted process used in the assembly of aluminum chassis structures in the automotive industry. Finite element analysis (FEA) is usually adopted to predict distortions caused in the welding process. However, only nominal distortions result from FEA simulations. Welding distortions could be more accurately predicted by introducing the prediction of tolerances due to a modification of the input parameters. The aim of this work is therefore to introduce the tolerance evaluation in the FEA model, by varying the welding input parameters (geometrical and dimensional tolerances on the parts, heat input…). To find the most suitable FEA model to investigate welding process tolerance, three FEA models are compared: one is the thermo-elastic-plastic (TEP) model, and two are based on the inherent strain method. The case study uses a thin (2 mm) aluminum T-joint, which is commonly used in automotive chassis assembly. Results deriving from FEA simulations were compared with experimental data. Among the various input parameters affecting the welding process, the authors combined the dimensional tolerance on the plate thickness with the variability of the heat input. The results provided a tolerance range value for the angular distortion of the T-joint.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call