Abstract

The transmission of mosquito-borne diseases is strongly linked to the abundance of the host vector. Identifying the environmental and biological precursors which herald the onset of peaks in mosquito abundance would give health and land-use managers the capacity to predict the timing and distribution of the most efficient and cost-effective mosquito control. We analysed a 15-year time series of monthly abundance of Aedes vigilax, a tropical mosquito species from northern Australia, to determine periodicity and drivers of population peaks (high-density outbreaks). Two sets of density-dependent models were used to examine the correlation between mosquito abundance peaks and the environmental drivers of peaks or troughs (low-density periods). The seasonal peaks of reproduction (r) and abundance () occur at the beginning of September and early November, respectively. The combination of low mosquito abundance and a low frequency of a high tide exceeding 7 m in the previous low-abundance (trough) period were the most parsimonious predictors of a peak's magnitude, with this model explaining over 50% of the deviance in . Model weights, estimated using AICc, were also relatively high for those including monthly maximum tide height, monthly accumulated tide height or total rainfall per month in the trough, with high values in the trough correlating negatively with the onset of a high-abundance peak. These findings illustrate that basic environmental monitoring data can be coupled with relatively simple density feedback models to predict the timing and magnitude of mosquito abundance peaks. Decision-makers can use these methods to determine optimal levels of control (i.e., least-cost measures yielding the largest decline in mosquito abundance) and so reduce the risk of disease outbreaks in human populations.

Highlights

  • A few of the approximately 3000 mosquito species known worldwide feed on human blood [1]

  • A recent analysis of Ae. vigilax population dynamics in northern Australia demonstrated that negative density feedback alone accounts for over 31% of the deviance in population growth rate, with another 40% of the deviance explained by the addition of high tide frequency, rainfall and relative humidity [10]

  • We found the highest population growth rate is in September, which is two months earlier than the peak of mosquito abundance

Read more

Summary

Introduction

A few of the approximately 3000 mosquito species known worldwide feed on human blood [1]. A recent analysis of Ae. vigilax population dynamics in northern Australia demonstrated that negative density feedback alone accounts for over 31% of the deviance in population growth rate, with another 40% of the deviance explained by the addition of high tide frequency, rainfall and relative humidity [10]. This combination of negative density feedback and environmental influences contribute to the characteristic oscillatory pattern of peaks and troughs in mosquito abundance over the course of a single year

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call