Abstract

In this work, regular convergence patterns of the structural, harmonic, and VPT2-calculated anharmonic vibrational parameters of ethylene towards the Kohn–Sham complete basis set (KS CBS) limit are demonstrated for the first time. The performance of the VPT2 scheme implemented using density functional theory (DFT-BLYP and DFT-B3LYP) in combination with two Pople basis sets (6-311++G** and 6-311++G(3df,2pd)), the polarization-consistent basis sets pc-n, aug-pc-n, and pcseg-n (n = 0, 1, 2, 3, 4), and the correlation-consistent basis sets cc-pVXZ and aug-cc-pVXZ (X = D, T, Q, 5, 6) was tested.The BLYP-calculated harmonic frequencies were found to be markedly closer than the B3LYP-calculated harmonic frequencies to the experimentally derived values, while the calculated anharmonic frequencies consistently underestimated the observed wavenumbers. The different basis set families gave very similar estimated values for the CBS parameters. The anharmonic frequencies calculated with B3LYP/aug-pc-3 were consistently significantly higher than those obtained with the pc-3 basis set; applying the aug-pcseg-n basis set family alleviated this problem. Utilization of B3LYP/aug-pcseg-n basis sets instead of B3LYP/aug-cc-pVXZ, which is computationally less expensive, is suggested for medium-sized molecules. Harmonic BLYP/pc-2 calculations produced fairly accurate ethylene frequencies.Graphical In this study, the performance of the VPT2 scheme implemented using density functional theory (DFT-BLYP and DFT-B3LYP) in combination with the polarization-consistent basis sets pc-n, aug-pc-n, and pcseg-n (n = 0, 1, 2, 3, 4), and the correlation-consistent basis sets cc-pVXZ and aug-cc-pVXZ (X = D, T, Q, 5, and 6) was tested. For the first time, we demonstrated regular convergence patterns of the structural, harmonic, and VPT2-calculated anharmonic vibrational parameters of ethylene towards the Kohn–Sham complete basis set (KS CBS) limitElectronic supplementary materialThe online version of this article (doi:10.1007/s00894-015-2902-z) contains supplementary material, which is available to authorized users.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.