Abstract
Machine learning is a specific application of artificial intelligence that allows computers to learn and improve from data and experience via sets of algorithms, without the need for reprogramming. In the field of energy storage, machine learning has recently emerged as a promising modelling approach to determine the state of charge, state of health and remaining useful life of batteries. First, we review the two most studied types of battery models in the literature for battery state prediction: the equivalent circuit and physics-based models. Based on the current limitations of these models, we showcase the promise of various machine learning techniques for fast and accurate battery state prediction. Finally, we highlight the major challenges involved, especially in accurate modelling over length and time, performing in situ calculations and high-throughput data generation. Overall, this work provides insights into real-time, explainable machine learning for battery production, management and optimization in the future. Predicting the properties of batteries, such as their state of charge and remaining lifetime, is crucial for improving battery manufacturing, usage and optimisation for energy storage. The authors discuss how machine learning methods and high-throughput experimentation provide a data-driven approach to this problem, and highlight challenges in building models which provide fast and accurate battery state predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.