Abstract

The car industry is entering a new age due to electric energy as a fuel in the contemporary era. Electric batteries are being more widely used in the automobile sector these days. As a result, the inner workings of these battery systems must be fully comprehended. There is currently no accurate model for predicting an electric car battery’s state of health (SOH). This study aims to use machine learning to develop a reliable SOH prediction model for batteries. A correct optimal method was also constructed to drive the modeling process in the right direction. Extensive simulations were performed to verify the accuracy of the suggested methodology. A state of health method for data processing was developed. The method involves a complex data-driven model combining Big Data, Artificial Intelligence (A.I.), and the Internet of Things (IoT) technologies. To establish the most effective technique for certifying the actual condition of real-life battery health, researchers compared the accuracy and performance of several states of health models. For improved understanding and prediction of the condition of health behavior, data-driven modeling has certain significant advantages over older methodologies. The methods used in this study can be seen as a revolutionary low-cost, high-accuracy, and dependable approach to understanding and analyzing the state of health of batteries. At first, an intelligent model was created using a data-driven modeling strategy. Secondly, the concurrent battery data are qualified using the data-driven model. The machine learning (ML) method creates a very accurate and dependable model for forecasting battery health in real-world scenarios. Third, the previously established ML model was used to develop a knowledge-based online service for battery health. This web service can be used to test battery health, monitor battery behavior, and perform a variety of other tasks. A variety of similar solutions for diverse systems can be derived using the same technique. The default efficiency of the ML algorithmic module, R-Squared (R2), and Mean Square Error (MSE) were also utilized as performance measures. The R2 as a standard is used to examine the effectiveness of a fit. The result is a value between 0 and 1, with 1 indicating a better model fit. MSE stands for mean squared error. A lower MSE number implies superior model performance, since it reflects how close the parameter estimates are to the actual values. The training set of the battery model had a score of 0.9999, whereas the testing set had a score of 0.9995. The R2 score was one, with an M.S.E. of 0.03. As a result of these three indicators, the data-driven ML model used in this study proved to be accurate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.