Abstract

Species occurrence-based climate niche models (CNMs) serve as valuable tools for predicting the future ranges of species’ suitable habitats, aiding the development of climate change adaptation strategies. However, these models do not address an essential aspect - productivity, which holds economic significance for timber production and ecological importance for carbon sequestration and ecosystem services. In this study, we investigated the potential to extend the CNMs to predict species productivity under various climate conditions. Lodgepole pine (Pinus contorta Dougl. ex Loud.) and Douglas-fir (Pseudotsuga menziesii Franco.) were selected as our model species due to their comprehensive range-wide occurrence data and measurement of site productivity. To achieve this, we compared and optimized the performance of four individual modeling algorithms (Random Forest (RF), Maxent, Generalized Boosted Models (GBM), and Generalized Additive Model (GAM)) in reflecting site productivity by evaluating the effect of spatial filtering, and the ratio of presence to absence (p/a ratio) observations. Additionally, we applied a binning process to capture the overarching trend of climatic effects while minimizing the impact of other factors. We observed consistency in optimal performance across both species when using the unfiltered data and a 1:1.5 p/a ratio, which could potentially be extended to other species. Among the modeling algorithms explored, we selected the ensemble model combining RF and Maxent as the final model to predict the range-wide site productivity for both species. The predicted range-wide site productivity was validated with an independent dataset for each species and yielded promising results (R2 above 0.7), affirming our model’s credibility. Our model introduced an innovative approach for predicting species productivity with high accuracy using only species occurrence data, and significantly advanced the application of CNMs. It provided crucial tools and insights for evaluating climate change's impact on productivity and holds a better potential for informed forest management and conservation decisions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call