Abstract

Climate change results in the habitat loss of many conifer tree species and jeopardizes species biodiversity and forest ecological functions. Delineating suitable habitats for tree species via climate niche model (CNM) is widely used to predict the impact of climate change and develop conservation and management strategies. However, the robustness of CNM is broadly debated as it usually does not consider soil and competition factors. Here we developed a new approach to combine soil variables with CNM and evaluate interspecific competition potential in the niche overlapping areas. We used an endangered conifer species - Chamaecyparis formosensis (red cypress) - as a case study to predict the impact of climate change. We developed a novel approach to integrate the climate niche model and soil niche model predictions and considered interspecific competition to predict the impacts of climate change on tree species. Our results show that the suitable habitat for red cypress would decrease significantly in the future with an additional threat from the competition of an oak tree species. Our approach and results may represent significant implications in making conservation strategies and evaluating the impacts of climate change, and providing the direction of the refinement of the ecological niche model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call