Abstract

Abstract: An ensemble of rule‐based models was constructed to assess possible future braided river planform configurations for the Toklat River in Denali National Park and Preserve, Alaska. This approach combined an analysis of large‐scale influences on stability with several reduced‐complexity models to produce the predictions at a practical level for managers concerned about the persistence of bank erosion while acknowledging the great uncertainty in any landscape prediction. First, a model of confluence angles reproduced observed angles of a major confluence, but showed limited susceptibility to a major rearrangement of the channel planform downstream. Second, a probabilistic map of channel locations was created with a two‐parameter channel avulsion model. The predicted channel belt location was concentrated in the same area as the current channel belt. Finally, a suite of valley‐scale channel and braid plain characteristics were extracted from a light detection and ranging (LiDAR)‐derived surface. The characteristics demonstrated large‐scale stabilizing topographic influences on channel planform. The combination of independent analyses increased confidence in the conclusion that the Toklat River braided planform is a dynamically stable system due to large and persistent valley‐scale influences, and that a range of avulsive perturbations are likely to result in a relatively unchanged planform configuration in the short term.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.