Abstract

DNA-Sequencing of tumor cells has revealed thousands of genetic mutations. However, cancer is caused by only some of them. Identifying mutations that contribute to tumor growth from neutral ones is extremely challenging and is currently carried out manually. This manual annotation is very cumbersome and expensive in terms of time and money. In this study, we introduce a novel method "NLP-SNPPred" to read scientific literature and learn the implicit features that cause certain variations to be pathogenic. Precisely, our method ingests the bio-medical literature and produces its vector representation via exploiting state of the art NLP methods like sent2vec, word2vec and tf-idf. These representations are then fed to machine learning predictors to identify the pathogenic versus neutral variations. Our best model (NLPSNPPred) trained on OncoKB and evaluated on several publicly available benchmark datasets, outperformed state of the art function prediction methods. Our results show that NLP can be used effectively in predicting functional impact of protein coding variations with minimal complementary biological features. Moreover, encoding biological knowledge into the right representations, combined with machine learning methods can help in automating manual efforts. A free to use web-server is available at http://www.nlp-snppred.cbrlab.org.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call