Abstract
Low operational stability is the main limiting factor for commercialization of the blue phosphorescent organic light emitting diodes (PhOLEDs). The high energy and long lifetime of triplet excitons in blue PhOLEDs makes them more prone to degradation. Degradation of the host molecules in the emitting layer of PhOLEDs is one of the possible mechanisms leading to the luminosity loss in the course of device operation. Although possible degradation mechanisms are proposed in the literature, predicting the degradation kinetics is not straightforward because the evolution of excited states should be accurately described. We propose a computational scheme to assess the operational stability of PhOLED host materials. Our protocol relies on the usage of the multireference CASSCF/XMCQDPT2 method. In the present work we consider the degradation of four prototypical blue PhOLED host molecules in the charged and excited states as well as the degradation induced by exciton–polaron and exciton–exciton annihilation proce...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.