Abstract

Enhanced efficiency and reduced efficiency roll-off in phosphorescent organic light-emitting diodes (PhOLEDs) are realized by interposing a solution-processed gold nanoparticle (GNP)-based interlayer between the anode and the hole-injection layer. Transient photoluminescence measurements elucidate that a reduced lifetime of the triplet excitons was observed for samples having a GNP-interlayer as compared to a control sample without the GNP-interlayer. The decrease in the triplet exciton lifetime, caused by the coupling between the triplet excitons and the localized surface plasmons (LSPs) excited by the GNPs, enables reducing the triplet–triplet and triplet–polaron annihilation processes, thereby a reduced efficiency roll-off in PhOLEDs. The presence of a GNP-interlayer also acts as an optical out-coupling layer contributing to the efficiency enhancement and was demonstrated by the theoretical simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.