Abstract

SummaryThis study built a micro-simulation Markov model to determine the treatment threshold of osteoporosis in postmenopausal women in Mainland China. Treatment with zoledronate is cost-effective when FRAX-based (Fracture risk assessment tool) fracture probability is over 7%.IntroductionThe purpose of this study is to estimate FRAX-based fracture probabilities in Mainland China using real-world data, at which intervention could be cost-effective.MethodsWe developed a micro-simulation Markov model to capture osteoporosis states and relevant morbidities including hip fracture, vertebral fracture, and wrist fracture. Baseline characteristics including incidences of osteoporosis and distribution of risk factors were derived from the Peking Vertebral Fracture study, the largest prospective cohort study of postmenopausal women in Mainland China. We projected incidences of fractures and deaths by age groups under two treatment scenarios: 1) no treatment, and 2) zoledronate. We also projected total quality-adjusted life-years (QALY) and total costs including fracture management and osteoporosis drugs for cost-effectiveness analysis. Cost-effective intervention thresholds were calculated based on the Chinese FRAX model.ResultsTreatment with zoledronate was cost-effective when the 10-year probability of major osteoporotic fracture based on FRAX was above 7%. The FRAX threshold increased by age from 51 to 65 years old, and decreased in elder age groups, ranging from 4% to 9%.ConclusionsUsing real-world data, our model indicated that widespread use of zoledronate was of both clinical and economic benefit among Chinese postmenopausal women. Using a FRAX-based intervention threshold of 7% with zoledronate should permit cost-effective access to therapy to patients and contribute to reducing the disease burden of osteoporosis in Mainland China.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.