Abstract
This paper describes an irreversible cohesive zone model to simulate fatigue crack growth. The model includes a three-dimensional (3-D) cohesive law that follows a distinct loading/unloading path and a damage evolution mechanism that reflects a gradual degradation of cohesive properties of the material under the influence of cyclic loading. To overcome convergence difficulties arising from nonlinearity of the cohesive zone model, the stabilization technique and the viscous regularization of the constitutive law are employed. For high-cycle fatigue applications, a damage extrapolation scheme is adopted to reduce computational cost. The irreversible cohesive zone model is implemented in the finite element software ABAQUS through a user defined subroutine and is used to predict fatigue crack growth in a compact-tension-shear (CTS) specimen with an emphasis on the extrinsic influence of overload for different loading modes. The numerical results show good agreement with experimental records documented in the open literature and capture the essential features of fatigue crack growth for various loading conditions. This indicates that the irreversible cohesive zone model can serve both as an accurate and efficient tool for the prediction of fatigue crack growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.