Abstract
BackgroundSince January 2020, India has faced two waves of COVID-19; preparation for the upcoming waves is the primary challenge for public health sectors and governments. Therefore, it is important to forecast future cumulative confirmed cases to plan and implement control measures effectively. MethodsThis study proposed a hybrid autoregressive integrated moving average (ARIMA) and Prophet model to predict daily confirmed and cumulative confirmed cases. The built-in auto.arima function was first used to select the optimal hyperparameter values of the ARIMA model. Then, the modified ARIMA model was used to find the best fit between the test and forecast data to find the best model parameter combinations. Articles, blog posts, and news stories from virologists, scientists, and health experts related to the third wave of COVID-19 were gathered using the Python web scraping package Beautiful Soup. Their opinions (sentiments) toward the potential third wave were analyzed using natural language processing (NLP) libraries. ResultsA spike in daily confirmed and cumulative confirmed cases was predicted in India in the next 180 days based on past time series data. The results were validated using various analytical tools and evaluation metrics, producing a root mean square error (RMSE) of 0.14 and a mean absolute percentage error (MAPE) of 0.06. The NLP processing results revealed negative sentiments in most articles and blogs, with few exceptions. ConclusionThe findings of this study suggest that there will be more active cases in the upcoming days. The proposed models can forecast future daily confirmed and cumulative confirmed cases. This study will help the country and states plan appropriate public health measures for the upcoming waves of COVID-19.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.