Abstract
A suitable model to predict the toxicity of current and continuously emerging disinfection by-products (DBPs) is needed. This study aims to establish a reliable model for predicting the cytotoxicity of DBPs to Chinese hamster ovary (CHO) cells. We collected the CHO cytotoxicity data of 74 DBPs as the endpoint to build linear quantitative structure-activity relationship (QSAR) models. The linear models were developed by using multiple linear regression (MLR). The MLR models showed high performance in both internal (leave-one-out cross-validation, leave-many-out cross-validation, and bootstrapping) and external validation, indicating their satisfactory goodness of fit (R2 = 0.763-0.799), robustness (Q2LOO = 0.718-0.745), and predictive ability (CCC = 0.806-0.848). The generated QSAR models showed comparable quality on both the training and validation levels. Williams plot verified that the obtained models had wide application domains and covered the 74 structurally diverse DBPs. The molecular descriptors used in the models provided comparable information that influences the CHO cytotoxicity of DBPs. In conclusion, the linear QSAR models can be used to predict the CHO cytotoxicity of DBPs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have