Abstract
Based on the latest Planck surveys, the universe is close to being remarkably flat, and yet, within observational error, there is still room for a slight curvature. If the curvature is positive, then this would lead to a closed universe, as well as allow for a big bounce scenario. Working within these assumptions, and using a simple model, we predict that the cosmos may have a positive curvature in the amount, Ω0=1.001802, a value within current observational bounds. For the scaling laws associated with the density parameters in Friedmann’s equations, we will assume a susceptibility model for space, where, , equals the smeared cosmic susceptibility. If we allow the to decrease with increasing cosmic scale parameter, “a”, then we can predict a maximum Hubble volume, with minimum CMB temperature for the voids, before contraction begins, as well as a minimum volume, with maximum CMB temperature, when expansion starts. A specific heat engine model for the cosmos is also entertained for this model of a closed universe.
Highlights
Models for a cyclic universe and big bounce, versus big bang, scenario, for the cosmos are once again coming into vogue [1] [2] [3] [4] [5]
If the curvature is positive, this would lead to a closed universe, as well as allow for a big bounce scenario
We have shown how it is possible to create a closed universe using a cosmic susceptibility model with unconventional scaling behavior for dark matter and dark energy
Summary
Models for a cyclic universe and big bounce, versus big bang, scenario, for the cosmos are once again coming into vogue [1] [2] [3] [4] [5]. They bypass some of the long standing problems in cosmology. Among them we include the cosmic volume singularity problem, and horizon problem, i.e., coming up with an explanation for the causal isotropy in CMB temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Astronomy and Astrophysics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.