Abstract

Abstract In this paper the statistics of daily maximum and minimum surface air temperature at weather stations in the southeast United States are examined as a function of the El Niño–Southern Oscillation (ENSO) and Arctic Oscillation (AO) phase. A limited number of studies address how the ENSO and/or AO affect U.S. daily—as opposed to monthly or seasonal—temperature averages. The details of the effect of the ENSO or AO on the higher-order statistics for wintertime daily minimum and maximum temperatures have not been clearly documented. Quality-controlled daily observations collected from 1960 to 2009 from 272 National Weather Service Cooperative Observing Network stations throughout Florida, Georgia, Alabama, and South and North Carolina are used to calculate the first four statistical moments of minimum and maximum daily temperature distributions. It is found that, over the U.S. Southeast, winter minimum temperatures have higher variability than maximum temperatures and La Niña winters have greater variability of both minimum and maximum temperatures. With the exception of the Florida peninsula, minimum temperatures are positively skewed, while maximum temperatures are negatively skewed. Stations in peninsular Florida exhibit negative skewness for both maximum and minimum temperatures. During the relatively warmer winters associated with either a La Niña or AO+, negative skewnesses are exacerbated and positive skewnesses are reduced. To a lesser extent, the converse is true of the El Niño and AO−. The ENSO and AO are also shown to have a statistically significant effect on the change in kurtosis of daily maximum and minimum temperatures throughout the domain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call