Abstract
Unconfined compressive strength (UCS) is a critical property for assessing the engineering performances of sustainable materials, such as cement-fly ash mortar (CFAM), in the design of construction engineering projects. The experimental determination of UCS is time-consuming and expensive. Therefore, the present study aims to model the UCS of CFAM with boosting machine learning methods. First, an extensive database consisting of 395 experimental data points derived from the literature was developed. Then, three typical boosting machine learning models were employed to model the UCS based on the database, including gradient boosting regressor (GBR), light gradient boosting machine (LGBM), and Ada-Boost regressor (ABR). Additionally, the importance of different input parameters was quantitatively analyzed using the SHapley Additive exPlanations (SHAP) approach. Finally, the best boosting machine learning model's prediction accuracy was compared to ten other commonly used machine learning models. The results indicate that the GBR model outperformed the LGBM and ABR models in predicting the UCS of the CFAM. The GBR model demonstrated significant accuracy, with no significant difference between the measured and predicted UCS values. The SHAP interpretations revealed that the curing time (T) was the most critical feature influencing the UCS values. At the same time, the chemical composition of the fly ash, particularly Al2O3, was more influential than the fly-ash dosage (FAD) or water-to-binder ratio (W/B) in determining the UCS values. Overall, this study demonstrates that SHAP boosting machine learning technology can be a useful tool for modeling and predicting UCS values of CFAM with good accuracy. It could also be helpful for CFAM design by saving time and costs on experimental tests.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have