Abstract
AbstractThis research presents a neural network algorithm to identify the best modeling and simulation methods and assumptions for the most widespread nanofluid combinations. The neural network algorithm is trained using data from earlier nanofluid experiments. A multilayer perceptron with one hidden layer was employed in the investigation. The neural network algorithm and data set were created using the Python Keras module to forecast the average percentage error in the heat transfer coefficient of nanofluid models. Integer encoding was used to encode category variables. A total of 200 trials of different neural networks were taken into consideration. The worst‐case error bound for the chosen architecture was then calculated after 100 runs. Among the eight models examined were the single‐phase, discrete‐phase, Eulerian, mixture, the mixed model of discrete and mixture phases, fluid volume, dispersion, and Buongiorno's model. We discover that a broad range of nanofluid configurations is accurately covered by the dispersion, Buongiorno, and discrete‐phase models. They were accurate for particle sizes (10–100 nm), Reynolds numbers (100–15,000), and volume fractions (2%–3.5%). The accuracy of the algorithm was evaluated using the root mean square error (RMSE), mean absolute error (MAE), and R2 performance metrics. The algorithm's R2 value was 0.80, the MAE was 0.77, and the RMSE was 2.6.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.