Abstract

Evaluating the physical degradation behavior and estimating the lifetime of engineering systems and structures is crucial to ensure their safe and reliable operation. However, measuring lifetime through actual operating conditions can be a difficult and slow process. While valuable and quick in measuring lifetimes, accelerated life testing is often oversimplified and does not provide accurate simulations of the exact operating environment. This paper proposes a data-driven framework for time-efficient modeling of field degradation using sensor measurements from short-term actual operating conditions degradation tests. The framework consists of two neural networks: a physics discovery neural network and a predictive neural network. The former models the underlying physics of degradation, while the latter makes probabilistic predictions for degradation intensity. The physics discovery neural network guides the predictive neural network for better life estimations. The proposed framework addresses two main challenges associated with applying neural networks for lifetime estimation: incorporating the underlying physics of degradation and requirements for extensive training data. This paper demonstrates the effectiveness of the proposed approach through a case study of atmospheric corrosion of steel test samples in a marine environment. The results show the proposed framework's effectiveness, where the mean absolute error of the predictions is lower by up to 76% compared to a standard neural network. By employing the proposed data-driven framework for lifetime prediction, systems safety and reliability can be evaluated efficiently, and maintenance activities can be optimized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.