Abstract

This study seeks to identify the determinants of academic performance in mathematics, science, and reading among Turkish secondary school students. Using data from the OECD's PISA 2018 survey, which includes several student- and school-level variables as well as test scores, we employed a range of supervised machine learning methods specifically ensemble decision trees to assess their predictive performance. Our results indicate that the boosted regression tree (BRT) method outperforms other methods bagging and random forest regression trees. Notably, the BRT highlights the importance of general secondary education programs over vocational and technical (VAT) education in predicting academic achievement. Moreover, both characteristics specific to student and school environment are demonstrated to be significant predictors of academic performance in all subject areas. These findings contribute to the development of evidence-based educational policies in Turkey.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.