Abstract

Data assimilation techniques, developed in the past two decades mainly for weather prediction, produce better forecasts by taking advantage of both theoretical/numerical models and real-time observations. In this paper, we explore the possibility of applying the four-dimensional variational data assimilation (4D-VAR) technique to the prediction of solar flares. We do so in the context of a continuous version of the classical cellular-automaton-based self-organized critical avalanche models of solar flares introduced by Lu and Hamilton (Astrophys. J. 380, L89, 1991). Such models, although a priori far removed from the physics of magnetic reconnection and magnetohydrodynamical evolution of coronal structures, nonetheless reproduce quite well the observed statistical distribution of flare characteristics. We report here on a large set of data assimilation runs on synthetic energy release time series. Our results indicate that, despite the unpredictable (and unobservable) stochastic nature of the driving/triggering mechanism within the avalanche model, 4D-VAR succeeds in producing optimal initial conditions that reproduce adequately the time series of energy released by avalanches and flares. This is an essential first step toward forecasting real flares.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.