Abstract
AbstractDue in part to sparse conventional observation coverage in the Antarctic region, atmospheric studies in this part of the globe often rely more heavily on numerical models. Model representation of atmospheric processes in the Antarctic remains inferior to representation in the Northern Hemisphere midlatitudes. Poor representation may be related to inaccurate model analyses that do not optimally utilize the limited observation network. Here, the ensemble Kalman filter (EnKF) data assimilation (DA) technique is employed in lieu of variational DA techniques to investigate impacts on model analysis accuracy. This DA technique [provided by the Data Assimilation Research Testbed (DART)] is coupled with a polar-modified, mesoscale numerical model that together compose Antarctic-DART (A-DART). A-DART is cycled with DA and run over a 1-month period, assimilating only conventional observations. Results show relatively good agreement between A-DART and observations. Comparison with radiosonde temperature and geostationary satellite wind observations shows large differences between RMSE and ensemble spread in the upper troposphere. The analysis increment shows large values in the eastern Atlantic–western Indian Oceans associated with geostationary satellite wind observations. Further evaluation determines that geostationary satellite wind observations may be biased in this region. Overall, this baseline demonstration of ensemble-based modeling applied in the Antarctic produced short-term forecasts that were competitive with two operational modeling systems while assimilating on the O(106) fewer observations. A-DART is capable of assimilating additional observations for a variety of applications. This study highlights the capability of applying this ensemble-based DA technique for process and forecast studies in an observation-sparse region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.