Abstract
It has been shown recently that when reactants and products are well modeled within a comprehensive self-consistent theory for the electrochemical interface, accurate predictions are possible for reversible potentials, Urev, in acid electrolyte for reactions such as reduction of H(+)(aq) to form under potential deposited H(ads) and oxidation of an OH bond of H2O(ads) to deposit OH(ads). Predictions are based on calculated Gibbs energies for the reactant and product being equal at the reversible potential, which is the potential at the crossing point for reaction and product Gibbs energies, plotted as functions of electrode potential. In this Letter, it is demonstrated that the same capability holds for these reactions in basic electrolyte. This demonstration opens up the opportunity for predictions of reversible potentials and mechanisms for other electrocatalytic reactions in base.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have